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Problem 1 Forbidden configurations in
incidence graphs

suggested by Martin Balko

Let P be a set of n points and L a set of m lines in the plane. We de‐
fine I(P,L) to be the set of incidences between points from P and lines
from L. That is, I(P,L) is the set of ordered pairs (p, L) such that p ∈ P ,
L ∈ L, and p ∈ L. We write G(P,L) to denote the incidence graph for P
and L. This ﴾oriented﴿ graph has vertex set P ∪ L and edge set I(P,L).

The celebrated Szemerédi–Trotter theorem [5] states that every set P of
n points and every set L of m lines in the plane satisfies

|I(P,L)| ∈ O((mn)2/3 +m+ n),

which is asymptotically tight. We focus on bounding the maximum num‐
ber of point‐line incidences in configurations (P,L) that have some fixed
forbidden induced subgraph in G(P,L). This area was initiated by Soly‐
mosi [3].

Let P1 and P2 be two sets of points in the plane and L1 and L2 be two
sets of lines in the plane. We say that (P1,L1) and (P2,L2) are isomorphic
if the graphs G(P1,L1) and G(P2,L2) are isomorphic.

Question 1. For some fixed set of points P0 and for a set of lines L0 in the
plane, what is the maximum number of incidences between n points and n
lines in the plane containing no subconfiguration isomorphic to (P0,L0)?

Solymosi [3] proved the bound o(n4/3) in the case that P0 is a fixed set of
k points in the plane in general position, that is, no three points from P0

lie on a common line, and L0 is the set of all lines determined by points
from P0. This is so‐called k‐clique. The following problem was asked by
Brass, Moser, and Pach [1, p. 291].

Question 2 ﴾[1]﴿. For a k‐clique (P0,L0), is there ε > 0 such that the max‐
imum number of incidences between n points and n lines in the plane
containing no k‐clique is in O(n4/3−ε)?

1



GGWeek

2024

Suk and Tomon [4] also posed the following conjecture about k‐fans and
proved some lower bounds for the problem. Here, a k‐fan consists of
k+1 points and k+1 lines such that k points lie on a single line and the
remaining k lines connect them to the (k + 1)st point.

Conjecture 1 ﴾[4]﴿. For every fixed k ≥ 3, every set of n points and n
lines in the plane that does not contain a k‐fan determines at most o(n4/3)
incidences.

The problem is open already for 3‐fans, which is a case mentioned by
Brass, Moser, and Pach [1, p. 291]. In general, one can consider vari‐
ous configurations, for example, Mirzaei and Suk [2] considered so‐called
natural t× t grids.
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Problem 2 Monochromatic convex 4‐holes in
bicolored point sets

suggested by Oswin Aichholzer

Figure 1: Left: Two monochromatic convex 4‐holes. Right: A set of 18
points without monochromatic 4‐hole.

Let S be a set of bicolored points in the plane in general position. A 4‐
hole h in S is a 4‐gon spanned by points in S such that no other points
of S are in the interior of h. The 4‐hole h is called monochromatic if all 4
points of h belong to the same color class, and h is called convex, if the
4 points of H are in convex position.

Question 1. Does there always exist a monochromatic convex 4‐hole h
in S?

See Figure 1 for examples of monochromatic convex 4‐holes ﴾left﴿, and
a set of 18 points that does not contain a monochromatic 4‐hole ﴾nei‐
ther convex nor non‐convex﴿. For the uncolored case it is known that for
5 or more points there always exists a convex 4‐hole. In the bicolored
case it hase been shown that for sufficiently large point sets there always
exists a ﴾not necessarily convex﴿ monochromatic 4‐hole [1]. The largest
known bicolored point set that does not contain a convex monochro‐
matic 4‐hole has 36 points. If the points are colored with three or more
colors, then it has been shown that there are sets not even spanning an
empty monochromatic triangle. See [1] for more details, background,
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and relevant literature.
MONOCHROMATIC CONVEX 4‐HOLES IN BICOLORED POINT SETS
Input: A set of bicolored points in the plane in general position.
Question: Does there always exist a monochromatic convex 4‐hole?
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Problem 3 Are geometric k‐planar graphs
geometric (k + 1)‐quasiplanar?

suggested by Todor Antić

We say that a drawing of a graph G is k‐planar if every edge has at most
k crossings with other edges of G. We say that a drawing of G is h‐
quasiplanar if it contains no set of h pairwise crossing edges. We say that
G is ﴾geometric﴿ k‐planar if it admits a ﴾straight‐line﴿ drawing which is
k‐planar and that it is ﴾geometric﴿ h‐quasiplanar if it admits a ﴾straight‐
line﴿ drawing which is h‐quasiplanar. We want to study the relationship
between these two classes of graphs. It is easy to notice that the following
holds.

Figure 1: Forbidden configuration in 3‐planar and 4‐quasiplanar graphs

Exercise 1. Each k‐planar graph is (k + 2)‐quasiplanar.

Still, if we want anything smaller than k+2, the problem becomes signif‐
icantly harder. In the case where we insist that our drawings are simple,
Angelini et al. [1] proved that every simple k‐planar drawing can be re‐
drawn to be simple (k + 1)‐quasiplanar. Their proof was quite involved
and required multiple redrawing operations and a complicated analy‐
sis to prove their correctness. In a simpler case, where the drawings are
straight‐line and the vertices are in convex position, which we call convex‐
geometric drawings, it is possible to prove that every convex‐geometric
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k‐planar drawing can be redrawn to be convex‐geometric k‐quasiplanar
[2]. However, it is not clear how to change the methods used in either of
these proofs to approach general geometric graphs. The proof for the
case of simple drawings relies on a redrawing technique that does not
change the position of the vertices but only redraws the edges and as
such can not be applied to a more restrictive setting of geometric graphs.
On the other hand, the proof for the convex‐geometric case relies heav‐
ily on the combinatorial properties of convex‐geometric graphs which do
not translate to the more general case of geometric graphs. Therefore,
it would be interesting to either solve or find a counterexample for the
following question.

Question 1. Is there a k0 ∈ N such that if k ≥ k0 then every geometric
k‐planar graph is geometric (k + 1)‐quasiplanar.

Of course, we can generalize this question and ask for a function f : N →
N such that ﴾for sufficiently large k﴿, each geometric k‐planar graph is
f(k)‐quasiplanar. It would be interesting to make this function as small
as possible.

Some simple observations can bemade that may help with solving Ques‐
tion 1.

Lemma 1. Let X,Y be two sets of k + 1 pairwise crossing edges in a k‐
planar drawing G then X ∩ Y = ∅.

Lemma 2. Let G be a k‐planar drawing of a graph and let X be a set of
k+1 pairwise crossing edges ofG. Then there is no edge ofGwhich crosses
an edge of X .

In particular, the above lemmas tell us that we can assume that if G is a
geometric k‐planar drawing X is a set of k + 1 pairwise crossing edges,
we can assume that all of the vertices of G which are not in X lay in the
outer face of the arrangement of line segments determined by X .

6



GGWeek

2024

References

[1] P. ANGELINI, M. A. BEKOS, F. J. BRANDENBURG, G. DA LOZZO, G. DI BAT‐
TISTA, W. DIDIMO, M. HOFFMANN, G. LIOTTA, F. MONTECCHIANI, I. RUT‐
TER, and C. D. TÓTH. Simple k‐planar graphs are simple (k + 1)‐
quasiplanar. J. Comb. Theory, Series B, 142:1–35, 2020. DOI: 10.1016/
j.jctb.2019.08.006.

[2] T. ANTIĆ. Convex‐geometric k‐planar graphs are convex‐geometric
﴾k+1﴿‐quasiplanar. In A. A. Rescigno and U. Vaccaro, editors, Com‐
binatorial Algorithms ﴾IWOCA﴿, volume 14764 of LNCS, pages 138–
150, Cham. Springer, 2024. DOI: 10.1007/978‐3‐031‐63021‐7\_11.

7

https://doi.org/10.1016/j.jctb.2019.08.006
https://doi.org/10.1016/j.jctb.2019.08.006
https://doi.org/10.1007/978-3-031-63021-7\_11


GGWeek

2024

Problem 4 ﴾k‐﴿Geometric Thickness of
Complete Graphs

suggested by Henry Förster

Figure 1: K12 has geometric thickness 3 [1].

Let G = (V,E) be an abstract graph and let E a geometric embedding
of G, that is, every vertex of V is assigned a coordinate in the plane and
every edge of E is realized as a straight‐line segment connecting both
its endpoints. We say that E has geometric thickness t if the edges can be
t‐colored such that each pair of edges crossing in E is bicolored. Con‐
versely, we say thatG has geometric thickness t if it admits an embedding
of geometric thickness t. We also write θ̄(G) for the minimum geometric
thickness of G.

Dillencourt, Epstein and Hirschberg [1] provided bounds on the geomet‐
ric thickness of complete graphs; see Fig. 1 for an example embedding.

Theorem 1. ⌈ n
5.646⌉ ≤ θ̄(Kn) ≤ ⌈n4⌉ and ⌈ ab

2a+2b−4⌉ ≤ θ̄(Ka,b) ≤ ⌈min{a,b}
2 ⌉.

While the bound for bipartite complete graphsKa,b is tight for sufficiently
large a ﴾w.r.t. b﴿, there is a significant gap for complete graphs Kn.
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Question 1. Can we close the gap between the upper and lower bound on
θ̄(Kn)?

It is worth remarking that Question 1 is open for 25 years by now. Thus,
we may be tempted to first consider a potentially easier variant. To this
end, we may consider the k‐geometric setting where we seek an embed‐
ding of G in which every edge is a k‐bend polyline. Let θ̄k(G) denote the
k‐geometric thickness of G, i.e., the minimum value t such that G admits
a k‐bend polyline embedding E such that its edges can be t‐colored so
that no two edges of the same color cross in E .

Question 2. What are upper and lower bounds for the 1‐geometric thick‐
nesses θ̄1(Kn) and θ̄1(Ka,b)? How about θ̄k(Kn) and θ̄k(Ka,b) for k ≥ 2?
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Problem 5 Counting Crossing‐Free Euler
Tours

suggested by Günter Rote

We are interested in the number of “crossing‐free” Euler tours of a plane
graph.

Definition 1. An Euler tour of a graph is a closed walk that uses every
edge exactly once.

For plane graphs, there are two notions of a “crossing‐free” Euler tour.

Definition 2.

• A non‐crossing Euler tour is a tour that has no crossing: A crossing is
formed by two pairs of consecutive edges (a, u), (u, b) and (c, u), (u, d)
such that their radial order around u is a, c, b, d or a, d, b, c. (In a
straight‐line drawing, such a tour is a weakly simple polygon.)

• In an A‐trail (sometimes called a non‐intersecting Euler tour), every
pair of consecutive edges (a, u), (u, b) must be adjacent in the radial
order around u.

Exercise 1. Show that every plane Eulerian graph (connected graph where
every vertex has even degree) has a non‐crossing Euler tour [5].

On the other hand, for the stronger notion of A‐trails, testing the exis‐
tence is NP‐hard [2], even for 3‐connected graphs having only triangular
and quadrilateral faces [1, Theorem 2].

We can ask the following types of questions:

A Extremal questions: How many non‐crossing Euler tours/A‐trails
can a graph with n vertices and m edges have? At most? At least?

B Counting: How fast can we count non‐crossing Euler tours?

The notions can be extended to multigraphs. In this case, we interpret
them as if the multigraph were converted to a simple graph by subdivid‐
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ing every edge. Alternatively, we work directly with multigraphs, taking
care the each edge in a bundle of parallel edges keeps its own identity.

Remark 1. There are two models of counting Euler tours: We may either
start at a vertex and proceed through all edges in some direction, or we
may consider equivalence classes up to cyclic rotation and reversal of the
tour. The difference is a fixed factor of 2m. Thus, onemay choose whichever
model is more convenient and translate to the other model if necessary.

Remark 2. According to [3], Kotzig [4] showed that A‐trails can be counted
in polynomial time in 4‐regular plane graphs.

Remark 3. The so‐called BEST Theorem1 of de Bruijn, Ehrenfest, Smith and
Tutte from 1941/1951 gives a determinant‐based formula for the number
of Euler tours in directed multigraphs.
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Problem 6 Reachability for Planar
Unit‐Length Linear Linkages in
Simple Polygons

suggested by Thomas Depian, Simon Dominik Fink, Martin Nöllenburg

For this problem, we revisit the concept of linkages in R2 that has been
extensively studied especially in the 80s and 90s [2, 5, 6, 9] and finds ap‐
plications in robotic motion planning or protein folding. In the following,
we use the nomenclature by Connelly and Demaine [1].

Definition 1 ﴾Linkage﴿. A linkage is a tuple (G, γ) where G = (V,E) is a
graph and γ : E → R+ a function that assigns a positive length to each
edge. If G is a path (v1, . . . , v|V |), we call (G, γ) a linear linkage. A linkage
(G, γ) is called unit‐length if γ(e) = ℓ for all e ∈ E and some ℓ ∈ R+.

Linear linkages are also known as rulers [5] and unit‐length linear linkages
as ℓ‐rulers [9]. For a given linkage, we can look at drawings of G that
satisfy the edge‐lengths specified by γ.

Definition 2 ﴾Configuration﴿. A configuration Γ of a linkage (G, γ) is a
straight‐line drawing of G such that ∥Γ(e)∥ = γ(e) holds for all e ∈ E.

A configuration where no two edges cross is called planar. An ℓ‐ruler that
admits a planar configuration is also called a matchstick graph [7].

One problem that has often been considered is whether there exists a
configuration, fixed at some point s, that reaches a given point t ∈ R2.

REACHABILITY
Input: A linear linkage (G, γ), a simple open polygon P ⊂ R2, and
two points s, t ∈ P .
Question: Does there exist a configuration Γ such that Γ(v1) = s,
Γ(vn) = t, and the image of Γ is apart from s and t contained in P ?

This problem is closely related to linkage reconfiguration ﴾also known as
folding﴿, where the task is to transform a configuration Γ1 into a config‐
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Linkage Init. Conf. Γ1? Polygon P Result Reference
General 4 None PSPACE‐hard [4]
Linear 4 4 segments NP‐hard [5]
Linear 4 Circle P [5]
Linear 4 Simple PSPACE‐complete [6]

Table 1: Overview of results on flavors of REACHABILITY.

uration Γ2. Often, each intermediate configuration should satisfy some
property, e.g., be planar [1, 2]. REACHABILITY can also be turned into a re‐
configuration problem when we include an initial configuration Γ1 ﴾with
Γ1(v1) = s﴿ and the task is to reconfigure it into a configuration Γ that sat‐
isfies the stated properties. Indeed, in the literature, it is usually defined
as a reconfiguration problem [1].

Different flavors of the REACHABILITY problem have been extensively stud‐
ied in the past, and Table 1 gives an overview. For more results related
to linkages, consider the PhD theses of Pei [8] and Demaine [2] as well as
the book ﴾chapters﴿ co‐authored by Demaine [1, 3].

To obtain the hardness results listed in Table 1, the authors used non‐
unit‐length linkages and a specific initial configuration. This gives rise to
the following question.

Question 1. What is the computational complexity of REACHABILITY for
unit‐length linear linkages or without an initial configuration?

REACHABILITY does not make any restrictions on the polygon P or the
points s and t. In particular, consider the case where (G, γ) is a unit‐
length linkage for some length ℓ and the edges of P also have length ℓ,
i.e., P is a unit‐length polygon. If s and t are also vertices of P , then
the polygon itself witnesses a configuration that reaches t and is almost
contained in P . This could make the problem easier and brings us to the
next question.

Question 2. What is the computational complexity of REACHABILITY for
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unit‐length linear linkages if P is a unit‐length polygon and s and t are
vertices of P ?

Finally, existing hardness results allow the configuration Γ to contain
crossings. However, if linkages are used to model robot arms, then we
require configurations to be planar. In this setting, the reconfiguration
problem has been studied [1, 3]. However, to the best of our knowledge,
the combination of planar configurations and bounding polygons has
received little attention. It is therefore natural to ask which of the results
from Table 1 also hold if we additionally require that no two edges cross
in the configuration Γ.

Question 3. What is the computational complexity of REACHABILITY (for
linear linkages) if we require the configuration Γ to be planar?
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Problem 7 Crossing families
suggested by Alexandra Weinberger

Definition 1. A crossing family in a geometric graph G is a set of edges in
G that pairwise cross. The size of a crossing family, is the number of edges
in that crossing family.

We denote by cf(G) the size of a largest crossing family in a geometric
graph G.

Question 1. What is the minimum cf(G) over all complete bipartite geo‐
metric graphs G whose partition classes have size m and n?

A graph is d‐regular if each vertex has d neighbors.

Question 2. What is the minimum cf(G) over all geometric graphs G
whose underlying abstract graph is a triangle‐free d‐regular graph on n
vertices?

For d = 2 the question is not yet exciting and to find out for which d the
question gets interesting is part of the open problem.

The questions are inspired from research on crossing families in complete
geometric graphs that has been done in the past decades. To the best of
our knowledge, the currently best known bounds are the following ﴾see
the corresponding articles for references to previous bounds and work﴿.
Each complete geometric graph on n vertices contains a crossing family
of size at least n1−o(1) [4]. There are complete geometric graphs on n
vertices whose largest crossing family has size at most 8⌈ n

41⌉ [1].

A related result is that there exists a constant c ﴾which cannot be taken
larger than 2

3﴿ such that any set of k mutually crossing triangles in a geo‐
metric graph G contains a family of at least kc mutually‐crossing 2‐paths
﴾each of which is the result of deleting an edge from one of the trian‐
gles﴿ [2].

But what if there are no triangles in the graph? Clearly, if the graph is
planar, then there are drawings where the biggest crossing family has
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size one. We are interested in triangle‐free graphs that have enough
crossings to make looking for crossing families interesting, resulting in
the above questions.

We remark that in the literature on crossing families in complete geo‐
metric graphs is mostly using the ﴾equivalent﴿ terminology of point sets
in the plane.

We further remark that there is a very similar concept called intersection
families ﴾or in the topological world thrackles﴿, where edges are pair‐
wise either crossing or share a vertex. Intersection families have also
been studied before considering complete graphs ﴾and regular bipar‐
tite graphs have helped there [3]﴿. We will not go father into the topic
here, expect to mention that considering intersection families rather than
crossing families in the here given questions would also lead to an inter‐
esting research problem.
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Problem 8 Edge‐minimum Saturated
Drawings of Geometrically Thick
Graphs

suggested by Thomas Depian, Simon Dominik Fink, Soeren Terziadis

We suggest to combine two concepts from graph drawing, namely geo‐
metric thickness and saturated graph drawings.

Geometric Thickness. Tutte [7] introduced the minimum number of
planar subgraphs whose union yields given a graph G as the thickness
θ(G) of G. Dillencourt, Eppstein and Hirschberg [3] studied geometric
thickness, a version of this concept which is more restricted in the sense
that there must be a single straight‐line drawing of the entire graph,
which contains planar subdrawings.

Definition 1. The geometric thickness θ̄(G) of a graph G is the minimum
number of colors s.t. there exists a straight‐line drawing of G and an edge‐
coloring with θ̄(G) colors that has no mono‐chromatic crossings.

Let Θk be the class of graphs G s.t. θ̄(G) = k. We call a drawing which
is evidence of a graph having geometric thickness k a Θk‐drawing. De‐
ciding if the geometric thickness of a multigraph is larger than 30 has
been proven ∃R‐complete [5] ﴾result of GGWeek 2023﴿. Solving the fol‐
lowing open problem of said publication would prove the same bound
for simple graphs, rather than multigraphs.

Question 1. Given t ∈ N, does there always exist a graph with geometric
thickness t such that any Θt‐drawing of G is connected in all t colors?

This question intuitively requires the graphs to be somewhat dense in
order to have “enough” edges in all layers. Related to this we introduce
the next concept.
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Edge Saturation. Saturation problems investigate under which con‐
dition it is impossible to add an edge to a graph in a graph class C s.t. the
resulting graph is also in C.

Definition 2. A graphG = (V,E) is saturated for a graph class C if there is
no edge e ̸∈ E s.t. (V,E∪e) ∈ C. Saturated graphs are also called maximal.

Within the set of saturated graphs we can look for minimal and maximal
elements.

Definition 3. Given n ∈ N, a graph G = (V,E) with |V | = n is max‐
saturated (min‐saturated) for a graph class C if it is saturated and there
is no other C‐saturated graph with the same number of nodes but more
(fewer) edges.

Turán [6] and Erdős, Hajnal and Moon [4] investigated these graphs. For
example planar‐max‐saturated graphs ﴾which famously have atmost 3n−
6 edges﴿ coincide with planar‐min‐saturated graphs. But if edges are
allowed to have one crossing, the number of edges in min‐ and max‐
saturated graphs can be different, i.e., 45

17n+O(1) vs. 4n− 8 [1].

If a drawing can be fixed, then we can equally define min‐ and max‐
saturated drawings, i.e., drawings which cannot be extended with an ad‐
ditional edge s.t. the resulting drawing still conforms to some predefined
drawing conventions. Chaplick et al. [2] have investigated this for k‐
planar graphs and present as an example a 4‐planar drawing of a cycle of
8 vertices, which is saturated ﴾while even the clique on 8 vertices allows
for a 3‐planar drawing﴿.

Combining the concepts. Both k‐planarity and geometric thickness
are concepts that are related to the graph being “drawable” in a par‐
ticular manner. Translating the concept of saturation from k‐planarity to
geometric thickness, we now aim to combineΘk‐drawings with saturated
drawings and state the following question.

Question 2. What is the smallest number of edges in a graph that admits
a saturated Θk‐drawing?
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﴾a﴿ K6,6 ﴾b﴿ First additional edge

﴾c﴿ Second additional edge ﴾d﴿ Drawing on 4 pages

Figure 1: ﴾a﴿ A Θ2‐drawing of K6,6 ﴾reproduced from a figure of Dillen‐
court, Eppstein and Hirschberg [3]﴿. We can augment this draw‐
ing with two additional edges ﴾b‐c﴿, which both cross red and
blue edges as well as each other. The resulting drawing ﴾d﴿ likely
requires four pages.

A very short preliminary example is shown in Figure 1, reproduced from
a figure of Dillencourt, Eppstein and Hirschberg [3]. They present a Θ2‐
drawing of the complete bipartite graph on 12 verticesG6,6. In this draw‐
ing we can identify two edges that cross each other as well as at least one
edge of each partition. Note that this is not a definitive proof, since one
would need to consider all possible partitions of the edges ﴾while the
drawing is fixed, the partition is not﴿. Still, it is an indication that ﴾after
adding some other edges and one of the two edges of the figure﴿, the re‐
sulting drawing will beΘ3‐saturated. In contrast, without a fixed drawing,
the complete graph K12 has a geometric thickness of only 3 and there‐
fore the number of edges in min‐ and max‐saturated drawings of graphs
in Θ3 would be different.
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Problem 9 Edge Colorings of Complete
Geometric Graphs

suggested by Patrick Schnider

The following is a notoriously open problem:

EDGE COLORING COMPLETE GEOMETRIC GRAPHS
Input: A complete geometric graph G on n vertices
Question: Howmany colors do we need to color the edges ofG such
that no two crossing edges get the same color.

It is not hard to see that n−1 colors always suffice. The best known lower
bound is also linear, namely n

2 +1 [2]. To our embarrassment, we are still
unable to prove that cn colors suffice for any c < 1. There are however
two objects which allow us to improve the upper bound, if the are large
enough. The first are non‐convex blobs.

Definition 1. Let P be a set of n points in the plane in general position.
The pairwise disjoint subsets P1, . . . , P4 ⊂ P are called non‐convex blobs
if for every choice of p1 ∈ P1, . . . , p4 ∈ P4 we have that p4 lies inside the
convex hull of p1, p2, p3.

It is known that if P contains non‐convex blobs, each of size an, then G,
the complete geometric graph on P , can be edge‐colored with (1− a)n
colors [3].

Definition 2. Let P be a set of n points in the plane in general position.
A spoke set of size k on P is a set S of k pairwise non‐parallel lines such
that in each unbounded region of the arrangement defined by the lines in
S there lies at least one point of P .

It is known that if P contains a spoke set of size bn, then G can be edge‐
colored with (1− b)n colors [1].
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Figure 1: A point set with large non‐convex blobs ﴾left﴿ and a point set
with a large spoke set ﴾right﴿.

Intuitively, if P has many points that lie “deep”, then we should have large
non‐convex blobs. On the other hand, if many points are “shallow”, we
should be able to find a large spoke set. Can we formalize this?

Question 1. Let P be a set of n points in the plane in general position and
let b > 0. Assume that P does not contain non‐convex blobs of size bn. Is
there an a > 0 such that P admits a spoke set of size bn?

If this question turns out to be too hard, it would also be interesting to
find large spoke sets for other definitions of “shallowness” of P , e.g., that
all points in P have small Tukey depth ﴾say, O(

√
n)﴿.
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Problem 10 Ramsey on Crossing Families
suggested by Joachim Orthaber

Consider a complete geometric graph D on n points in general position
in the plane. A set of k pairwise crossing edges is a crossing family of
size k in D. It is an open problem whether every complete geometric
graph on n vertices contains of crossing family of size linear in n. The
best known lower bound is n1−o(1), see Pach, Rubin, and Tardos [2].

As a step towards this problem, let us define a non‐crossing family of
size k in D as a collection of 4 disjoint point sets P1, P2, P3, and P4 of
k points in D, each, such that every choice of 4 points pi ∈ Pi yields a
non‐crossing drawing of K4 with p4 in the convex hull of the other three
points. This notion is inspired by an example of Pach, Saghafian, and
Schnider [3].

My question is now the following Ramsey‐type relaxation of trying to find
a crossing family of linear size:

Question 1. Does every complete geometric graph on n vertices contain
either a crossing family or a non‐crossing family of size linear in n?

This question is inspired by a question fromBose, Hurtado, Rivera‐Campo,
and Wood [1] on partitioning complete geometric graphs into crossing‐
free sub‐drawings:

Question 2. Is there a constant c < 1 such that every complete geometric
graph on n vertices can be partitioned into cn crossing‐free sub‐drawings?

It can be shown that a positive answer to Question 1 implies a positive
answer to Question 2.
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Problem 11 Reducing to a Triangulation
suggested by Joachim Orthaber

It is well known that every crossing‐free sub‐drawing of a complete ge‐
ometric graph on n points in general position can be extended to a tri‐
angulation of the convex hull of that point set. Other notions of trian‐
gulations include the triangulation of a polygon or the triangulation of a
pointgon, that is, a triangulation of a polygon with additional points in its
interior, see also Aichholzer, Rote, Speckmann, and Streinu [1].

Instead of extending a crossing‐free drawing to a triangulation of its con‐
vex hull, my question is now about reducing it to a triangulation of a
pointgon ﴾by removing edges﴿.

Question 1. Which properties are required such that a crossing‐free draw‐
ing on a point set contains a triangulation of a pointgon on that set?

In other words, the goal is to remove edges such that all faces of size
larger than 3 get connected to a single face and the boundary of that
face is still a simple polygon. Clearly the following two properties are
necessary to succeed, but are they also sufficient?

• Every vertex is incident to at least one triangular face.

• The union of all triangular faces forms a single polygon with holes.

The above question is actually inspired by a non‐geometric setting: In
generalized convex drawings every maximal crossing‐free sub‐drawing
fulfills the two stated properties, see Bergold, Felsner, M. Reddy, Or‐
thaber, and Scheucher [2]. That is, they are triangulations ﴾on the sphere﴿
but with some holes in it. Since in the geometric case maximal crossing‐
free sub‐drawing are exactly the triangulations of the convex hull, I won‐
dered whether in this more general case there is also some connection
to some kind of triangulations.
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